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STRESS AND THERMAL STRESS COMPENSATION IN QUARTZ SAW DEVICES

GENERAL PRESENTATION

Surface acoustic waves are sensitive to different physical quantities such as

temperature, forces, accelerations, ... [1-8]. The external perturbations induce static

or quasi-static stresses and strains in the crystal, which by non-linear coupling

modify the wave velocity and therefore induce frequency shifts in a SAW device. It

is necessary to minimize these effects in the case of SAW oscillators since they are at

the origin of most of frequency instabilities. (On the other hand, high sensitivities

can be used also for sensor applications).

Static temperature effects may be avoided by the choice of a temperature-

compensated cut like the classical ST-cut. '

The effects of forces depending closely on the geometry of the device (shape and

fixation conditions), one may think to study this problem for each particular device.

Another way which is followed in the present work is to investigate the possibility of

stress compensation by using the crystal anisotropy properties. (Fig. 1)

COMPENSATION OF STRESS EFFECTS
IN SAW-DEVICES

Conventional cut

(e.g:ST,X) Using crystal anisotropy

to find
intrinsic compensation

to certain kinds
Optimized plate shape of stresses

and <-
fixation conditions NEW CUTS

Fig.1 The problem of stress sensitivity in SAW devices
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In this approach [9,10] the effects of stresses are considered as the tensorial

equivalent of temperature effects, and under some hypothesis stress sensitivity

coefficients can be defined whatever the origin (thermo-elastic effects, external

forces) might be. Therefore a general relation between the wave velocity and the six

independent components of the quasi-staticstress tensor can be given.

Stress compensation will be obtained if the contributions of the main stress
components cancel each other, and this may happen for a given distribution of

stresses when a suitable SAW quartz cut is found minimizing the velocity shifts.

However as a compensa.'on seems unrealistic in:the most general case, the problem
will be treated first in the case of planar stresses in thin plates, which reduces the

number of stress components to three. In addition, a symmetrical stress distribution

will be considered, corresponding to equal axial stresses and negligible shear

component. In that configuration, stress compensation means that the two in-plane
axial stresses induce equal contributions with opposite signs. This approach was

used by Eernisse for bulk acoustic wave resonators [11] and led to the development

of the famous SC-cut.

The previous analysis, which only takes into account the contribution of in-plane

stresses, has been extended using the same formalism to the investigation of

flexural sensitivity of quartz cuts. In thecase of pure bending, the SAW'(which is
located close to the surface) will be submitted to compressive in-plane stresses only;

a symmetrical distribution of such bending forces will therefore be equivalent to a

symmetrical distribution of compressive, in-plane stresses and will not induce any
frequency shift in a SAW cut compensated for planar isotropic stresses.

The present work shows that

- several quartz cuts exist, exhibiting both zero first order temperature coefficient

and zero stress coefficient for planar isotropic stresses, according to the model.

- among these cuts exist two singly-rotated quartz plates, and experimental tests

were performed to check temperature and stress sensitivity of these particular cuts ;

results are compared to theoretical predictions obtained by analytical methods and

finite element analysis.

- theoretical calculations on flexural sensitivity of the new cuts (SAW propagating

on a bent cantilever beam, on a plate submitted to normal accelerations or on a thin

rectangular anisotropic plate) predict a possibility of bending forces compensation if

a symmetrical distribution of bending stresses is applied to the device.
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1. )ERIVATION OF STRESS SENSITIVITY COEFFICIENTS FOR
SURFACE ACOUSTIC WAVES

a) Wave propagation in a prestrained medium

The calculation is based on the model proposed by Tiersten [12, 13] for wave

propagation in a prestrained medium.

The general equation of a finite amplitude wave of displacement ui propagating on a

medium with specific mass po in the natural state submitted to a mechanical bias

(12] can be written as

p 8 r (la)
P ( U I (Aiskr

N- i r) = 0 onafreesurface (1b)Nk (iskr Cla

where /aak refers to the natural-state coordinates, Nk is the cosine director of the
normal to the surface. Aiskr are the modified elastic coefficients resulting from the

nonlinear coupling between the static stresses/strains and the high frequency wave.

These coefficients can be written in the form

Aiskr = C,kr + Ik (2)

where Ciskr are the regular second order elastic constants, and Hiskr appears as a

perturbation due to the bias, given by the relation

aU. aUkH =8 T + Cu+ (3)

tskr k r + skruu .u + Cesk + isr aa--

8 ik is the Kronecker symbol, Ciskruv are the third order nonlinear elastic constants,

Tsr, Suu and aUi / aae represent respectively the static stresses, strains and

displacement gradients characterizing-the mechanical bias. (Summation convention

on repeated indices is assumed).

b) General expression of SAW velocity

The mechanical displacement corresponding to a SAW propagating in the al

direction with a velocity V, at an angular frequency wo on an anisotropic medium in
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the absence of perturbation, taking piezoelectricity into account, is expressed by

q r~a 2  a 1

4 - it.) I(t- -I
uV =0b r)Ae e 0 (4)

rII

The reference axes (ai) of the natural state are presented in Fig. 2 with respect to the

crystal plate.

o2

0-

Fig. 2: Reference axes for a SAW propagating on a semi-infinite crystal plate

Arbi(r) represents the amplitudes of the 4 partial waves (r = 1-4) of the unperturbed

SAW. q(r) is the depth penetration coefficient of the r-th partial wave in the a2-

direction.

Eq. (4) may be expressed in a closer form by

4 U.)I - (nl1r) a )/V I
-0 b (r) A e e e(

r1

where

n (r) = n2 (r) = q(r) n 3 (r) = 0

Applying a perturbation method (13, 14] to the SAW propagating on the constrained

crystal (of volume V) the relative velocity shifts AVIVO can be expressed as

au, au"J 
dv

-- (')a_'_r _ar (6)
e) r ___ _ __ _ __

V, 2 p,, 0 0J UO* dv
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In this approach, piezoelectricity is taken into account only to determine the

unperturbed SAW expressed as a sum of 4 partial waves. The perturbation term

Hiskr is the same as in the non-piezoelectric a,,:proximation.

In the most general case, the perturbation terms Hiskr depend on the space

coordinates if the distribution of the static stresses and strains is inhomogeneous,
and a particular distribution of stresses is associated with each particular boundary

condition. If considering the case of an homogeneous stress and strain distribution

eq. (6) takes the simpler form:

AV--- = His Uls (7)
V iskr i

where Uiskr depends only on the unperturbed SAW parameters

au. au.-L - du
u $ ," (8)

2pcao u 0.* du

Assuming a plate thickness much greater than the penetration depth of the SAW,

the integration of eq. (8) over a2 [-- 0] yields a similar expression as in [14], except

that, taking piezoelectricity into account, summation is made over 4 partial waves

4

' APbk (p) A* b*(q) nr(p) n:(q)/ (q -q)p,.: = P 1

U 2kr= V 24 A b (p) A* b (q)*

p,q=l qp - qq

c) Stress sensitivity coefficients

The perturbating coefficients Hiskr implicitly contain the dependence between the

velocity and the static bias (eq. 3) in term of stresses, strains, and mechanical

displacements. The strains can be expressed as function of the stresses by means of

the compliance elastic constants Suvpq.

Ciskruv Suv is written:

Cikr Suv Ctskruv uvpq pq (10)
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The two last terms of eq. (3), aUi / aae and aUk / aae, cannot be, in general, directly

expressed as a function of the strains Suu.

But for solving the problem of the static deformations, it is necessary to apply the
fixation conditions of the plate. A conditionof a fixed point at the origin (al = a2 =

a3 = 0) is first given. A condition of no rigid rotations of the crystal plate around the
fixed point may be introduced without loss of generality. This second condition

implies
aU Ue = a

"- = for a1  a a 3 - 0
e k £

with as consequence
aU (12)

aa = Sie for a, = a2 = a3  0

Assuming that the SAW propagates in a small volume close to the origin eq. (12) can

be considered to be satisfied in this part of the crystal plate. Expanding Sie in terms

of the stresses Tpq, eq. (12) may be expressed close to the origin as

aU.aL (13)

aae ie pq p

Combining eqs. (10) and (13) into eq. (3), the velocity shift AVIV 0 is obtained in the
final form

8V7--  8 +C s + s (14

V pq (8 k 8sp rq Ciskruu uvpq Ceskr Sipq Ciser kepq) Uiskr

or in a condensed form
AV - -- = T a(15)

V pq pq
0

where sapq represent the different stress coefficients. They have the same symmetry
as Tpq, i.e. there are six independent stress-sensitivity coefficients.

d) Numerical example for quartz

As it may be seen in eq. (14), the stress sensitivity coefficients depend only on the

crystal anisotropy, and are independent of the plate geometry.
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They are computed by tensorial contraction on two independent terms:

- the first term is a contraction on 2nd order and 3rd order elastic constants:
Cijke, Ciskruv.

- the second term Uiskr is a combination of terms depending only on the
unperturbed SAW parameters.

First, the elastic constants are "rotated" and expressed in the set of axes parallel to
the surface, as defined on Figs. 2 and 3. Then the surface wave parameters are
computed, taking piezoelectricity into account, using a very classical algorithm,
close to Campbell & Jones method [15). This gives the term Uiskr, which is

contracted with the first bracket of eq. (14) to give the stress sensitivity coefficients.

An example of numerical results for quartz crystal is given on Fig. 4 where the six
independent stress coefficients are plotted on a contour-line map, as a function of cut
angles 0, (D and propagation direction of the SAW 'P. These angles, defined
according to IEEE standard [16) are represented on Fig. 3. This corresponds to a
(YXwet)c10Y plate, SAW propagation in the e-direction.

Z,Z

XI
, \,

X

Fig. 3 : Definition of the cut angles (D, 0 and propagation direction T
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Correspondance with Euler angles [17] is the following:

XEuler = '4IEEE

Euler -O EE 900

OEuler - IEEE

Examples

(for a detailed discussion of the definition of cut angles and symmetry properties of

quartz, see Appendix 1).

cut Euler IEEE

4 = 0, 0 = 0, Y = 0)
Y-cut, X prop. (,k = 0, 11 = 900, 0 = 0) equivalent for SAWs to

(4 =0,0 =1800, Y 0)

t, 132,75, ( = 0, 0 = 42,75, F = 0)

ST-cut, X prop. (X= 0 0 equivalent for SAWs to
( 0)) = 0, 0 = 222,75, P -= 0)

0= 9 0 , = 940 (4) = 900, = 1800, 'P = 33,44)
equivalent for SAWs on quartz toc 0 = 33,44) (4 = -90, 0 = 0, P = 33,440)

Numerical computation is performed using FORTRAN-77 programs on a DATA

GENERAL MV 1500/100 computer. Elastic, piezoelectric and dielectric constants

are taken from Slobodnick (17], Bechmann [18] and Thurston (19].

A complete mapping (Fig. 4) 0* < 0 < 900 (50 steps) and -60° < 4) < 600 (50 steps)

requires 19 X 25 values and takes about 15 minutes of CPU Time.

Values of cut angles non represented on Fig. 4 may be found according to symmetry

properties of SAWs on quartz (see Appendix 1)

(16)

$aI((P, -0, = a (180 _4 0, T) (17)
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2. QUARTZ CUTS COMPENSATED FOR BOTH 1st ORDER TEMPE-
RATURE EFFECTS AND PLANAR ISOTROPIC STRESSES EFFECTS

In this section, the model of stress sensitivity coefficients is applied to the problem of
planar, isotropic stress compensation. Sensitivity to static temperature effects has

also to be taken into account, to define SAW quartz cuts with low stress and
temperature sensitivity.

a) Symmetrical in-plane stress distribution in a thin plate

The case of a thin plate of quartz with the main surfaces free of stresses will be

considered now. In this case, there is a planar stress distribution of components T11,
T33 and T31 expressed in the set of axes parallel to the surface (Figs. 2 and 3).

An additional symmetry condition will be assumed : Ti = T33, T1 3 = 0. This

corresponds to a planar isotropic stress distribution which for instance appears in

the problem of thermal stresses in a circular plate. With these assumptions, the
velocity shifts depend only on a single stress coefficient sa

V a. T (18)
0

whereT TI- T33 andSa =Sa1l+ sa33

Compensation of planar isotropic stresses using quartz anisotropy consists in

finding SAW quartz cuts ( ,0 ,w) satisfying

(Sall + sa33) (4,0",) = 0 (19)

b) I st order static temperature effects

Static temperature sensitivity will be defined here using the temperature

coefficients of fundamental elastic constants according to H.F. Tiersten and B.K.

1,12].

he same formalism as in sec. 1, the first order temperature coefficient 0 a is

for a pure thermal bias in a free-expanding plate as

= (0 - 0) (20)
V o

C)
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where
0 d

=C erue + C e + C -e + (C )} U (21)
i u U0 qskr iq zbqr kq dO iskr iskr (1

and%%I %/) is the temperature elevation with respect to the reference state.

In eq. (21) ?UV are the coefficients of lineai expansion, d(Ciskr)/dO are the first
derivatives of the fundamental elastic constants, and Uiskr is the combination of

SAW parameters defined in the perturbation method for an homogeneous
distribution of stresses [10].

e) Numerical results for quartz

The loci of stress-compensated cuts are defined according to eq. (19). Taking the
propagation angle T as a parameter, these loci are represented on Fig. 5 in the (0,4))
plane in solid lines for different propagation directions : q1 = 30' (Fig. 5a), q = 450
(Fig. 5b). On the same graphs are represented in broken lines the loci of zero first-

order temperature coefficients.

T =3 0 ' Tq =45'
8 8

90 90 ,
80 /- 80 . , 

'

70 . 80
70

0
40010 40 P45

a 3020 'A 
P 4

Soi ie:lou fqat cut conen 0e fo'lnriorpcsrsefet

to
0 - ,. .- -. ... . . . . . . . . . . .

-oPieolcrct3aknit0con

-t0 -to
-20-2
-3 0 11- 3 0 .
-40-4,

,50 -50 '

-70: 70

... " " '"-901 0 . . .. . .. '
60-5040-3- 0-1 0 1 20 3 40 0 6060-50-40-30-20-10102304 06

Fig. 5
Solid lines : locus of quartz cuts compensated for planar isotropic stresses effects

dotted lines : locus of zero first order temperature coefficient
cut angles 6, dp and propagation direction T correspond to a (YXwft)dp8 plate

SAW propagation in the f-direction, according to IEEE standard [16]
Piezoelectricity taken into account
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The intersections between the two loci define quartz cuts satisfying both conditions

of stress and temperature compensation. Such intersections have been found to exist
for angles T between 200 and 600 approximately.

In the case of surface waves, the additional parameter Ti (if compared to bulk waves)
allows a degree of freedom in the choice of stress- and temperature-compensated
cuts. As a first criterium to choose between the different intersection points shown
on Fig. 5, it is interesting to look for singly rotated quartz plates ((D = 0) since
machining tolerances are easier to obtain than for doubly rotated plates.

The loci of temperature- and stress-compensated cuts are represented on Fig. 6 for

singly rotated cuts (4 = 0).

B Singly rotated Quartz cuts c =0
9 0 .....•... . . .,.
8070 -. /

50

30
20
10
0

-40-50 P30

-70

-80-9 0 0 L .. . .. . . . . . . ..
0 10 20 30 40 50 60 70 80 90T'

------- zero temperature coefficient

zero planar isotropic stress coefficient

Fig. 6

Solid lines: locus of quartz cuts compensated for planar isotropic stresses effects.
Broken lines: locus of zero first order temperature coefficient

Cut angles 4,6 and propagation direction Tr correspond to a (YXwet) OTh-i plate
SAW propagation in the ?-direction according to IEEE standard 1949 [161

Piezoelectricity taken into account
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Two intersections exist

- for w close to 300 (point P30)
- for qT close to 450 (point P45)

This last cut (P45 :4) = 0, 0 = 450, T = 450) is close to B.K. Sinha's STC-cut [20]

(4) = 0, 0 = 41.80, V = 46.890).

In order to check the model presented here, experimental work has been performed

on these two cuts, as exposed now.

3. EXPERIMENTAL RESULTS

a) Experimental method

Experiments are performed on quartz delay lines (100 and 150 finger pairs,

transducer period : 34 pm, time delay = 1.5 ps) built on Circular plates (diameter:

22 mm, thickness: 1 mm or 2 mm). The device is used in an oscillator operating at

100 Mhz.

Temperature compensation is checked by plotting the frequency vs temperature

curve between -20*C and + 500C. The propagation angle ip is adjusted to keep the

inversion point of the frequency/temperature curve between 180C and 250C.

When temperature compensation has been found, the delay line is submitted to

mechanical stresses with an apparatus represented on Fig. 7.

The circular plate is submitted to a single or double diametral compression obtained

by two pairs of knife-edges acting at 90° to each other.

The plate may be rotated around its axis, and the force-frequency effect is measured

for each azimuthal angle 13 between the propagation direction of the SAW and the

direction of the force (Fig. 7).

The experimental procedure is as follows:

The-knife-edges are removed, and the plate is held by a clamp until a-new angular

position is set. The plate is-then submitted to a diametral pre-compression of about

iN. The clamp is removed, so that the plate is submitted only to the compressive

forces. An additional force between IN and ION is set, and the frequency shifts are

measured with respect to the pre-strained state. The azimutal angle is measured

without contact by optical means.
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The force-frequency effect in a circular disk may be derived from the stress sensivity

coefficients and from the classical theory of elasticity [21).

0

1000 /

%' 0

a -axis
a3

Fig:7 Experimental setup for single and symmetrical diametral compression of a
circular quartz delay line
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The stress components at the center of an isotropic disk (diameter d, thickness t)
submitted to a single diametral compression by a force P are expressed as

6P - 2P -
=u = + ,(23)rid 0 ndt

where upper index "o" refers to a set of axes (a1°,a3°) parallel to the direction of the

force (Fig. 7).

After rotation to a set of axes (al,a3) parallel to the direction of the SAW, the
relative velocity shifts may be expressed in the final form

A 2L (SaC + Sa _ cos2f 2  sin2f (22)

F adt \ it 3)+2(a 33 oP-2 13 /~
0

Eq. (23) shows that the angular dependence of the frequency shifts is sinusoIdal,
with an offset value of (-2P/ndt) (Sall + sa33) corresponding to the case of a
symmetrical compression with two orthogonal forces of magnitude P/2.

b) Results for the cuts (() = 0, -13" < 0 < -2.5', 29* < vs < 33)

and (() = 0, 370 < 0 < 47 , 420 < w < 50').

Temperature effects

Singly-rotated cuts in the vicinity of the P30 cut were tested with cut angles

0 = -2.5', -5, -7 .- 10?, -130, and the propagation angles Ti corresponding to an

inversion point at room temperature were found at 32.50, 31.50, 310, 30, 290

respectively (Figs. 8 and 9). As a reference, the theoretical curve (-34x10- 9 ppm.K-2)

for the classical ST,X cut is shown. It may be seen that the thermal behavior of the
new cuts is very similar to the classical ST,X cut. In the vicinity of the P45 cut, four

singly-rotated cuts (4) = 390, T = 460 ; 0 = 33', q = 44.30 ; 8 = 41.80, T = 48,2*;

o = 450, T = 470) were tested. Results appear on Figs. 10 and 11.

Temperature-compensated cuts were experimentally found close to the theoretical

values (Iptheory - T'expl) < 0.5) in the vicinity of the P30 cut.'The difference between

theory and experiment is greater (about 20) in the vicinity of the P45 cut, and the
corrections introduced by the piezoelectric model do not cancel this discrepancy
existing also in the non-piezoelectric approximation used before.
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EXPERIMENTAL FREQUENCY-TEMPERATURE CURVES
cut angles 4=0 -10<8<0 30<V<33AF(ppm) I' ~= ~ q3

S...----=-5 4T=31.5

... _--=-25 T=32.5

2 kHz/ 20 PPm -Riference STX cut
(34x 10 -'.K)

-20 -10 10 20 30 40 50 60 Temperature ('C)

Fig. 8: Experimental static temperature characteristics for the cuts
( = 0, -130 < 0< -2.50, 290 < i< 330)
Comparison with the classical ST,X cut

D 0

-3i

-5! ,,/ii

-I l ; i

-7 / /
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-111 
1!/

-13 L p
26 28 30 32 34

STRESS eOEFFICIENT (units :10-12 m2 .N- I

------- TEMPERATURE COEFFICIENT (units :ppm.K-)

Fig. 9:
Theoretical contour line maps of temperature and planar isotropic stress coefficients

Thess curves are used as a guide line to experiment real, quartz cuts
in the vicinity of the intcrsection of both zero-stress and zero-temperature effects

cut'angles: = 0. -13 < 0< -2.5
propagation direction : 260 < q < 340

= real cuts, experimentally found temperature-compensated
and measured in the mechanical stress experiment
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Fig. 10
Experimental static temperature characteristics

a - for the cut (4) = 0, 0 = 41.8*, w= 46.90) corresponding to the theoreticalvalues of
B.1. Sinh a's STO cut (141

b - for the corrected cut ()=0,06 = 41.80, iv=48.20) close to the STC cut

8D=
47

/ off ~ I

45 a' it/ toI

I /

4 3 of I I J /

11 i t I ,

* i It

39 It t I

I , o

41 1 / t - t qj

39 STES COFFCIN (uit .10 ,, .

37t anls I = 0, 37* < p
42paato 44 etin 46 * 48T 50*

Theoetia= contourtlinexmpsrmnal ofun tempera turean plna ioopc stescefcet

and measured in the mechanical stress experiment
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In the neighboL -',ood of the P45 cut, the sensitivity of temperature-compensation to

the propagation angle q is about -3.5 ppm/°C for an increment of + 1 on p. This
figure is higher than for the P30 cut (4 - 0, e = -10*, T = 30*) : -2.5 ppni1C for

S= +10.

Second-order temperature coefficient is very similar for the two cuts, i.e. about
(-34x10-9 ppm.K-2). The theoretical value predicted by Sinha (20] for the STC cut is
(-9x10-9 ppm.K-2) which does not correspond to our experimental results.

In the neighbourhood of this cut, the sensitivity of temperature-compensation to the

propagation angle T is about -3.5 ppm/°C for an increment of + 10 on I. This figure
is higher than for the cut (4) = 0, 0 = -10° , p = 30') : -2.5 pprzn!C for Ap = + 1° .

Force-frequency effect

Figures 12, 13 and 14 show a comparison between experimental data and the

theoretical curves computed from the following values (Table I).

Stress compensation effects are clearly shown when the circular delay lines are

submitted to a pair of orthogonal forces of the same magnitude. But in the case of a

single diametral compression, the experimental points do not exactly match the

theoretical sinusoidal curve (Fig. 12). The reasons of this discrepancy might be

either a systematic error due to parasitic stresses induced by the experimental

setup, or due to the fact that the dimensions of the delay (9.5 X 4.5 mM2) are not

small with respect to the diameter of the plate (22 mm).

To investigate the possible origin of the discrepancy, the following attempts were

made:

- using stress calculation taking anisotropy into account
- increasing plate thickness to check the influence of parasitic bending forces.

- reducing bias introduced by systematic calculation.
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Fig. 12

Experimental force-frequency effect on temperature-compensated circular quartz
delay lines with a low sensitivity to planar isotropic- stresses:

c = 0 -1O < 0< -2.5* 3 0 0 < T< 3 Ve

single diametral compression: * represents experimental values
solid sinusoidal curve : theoretical values

.double diametral compression: o represents experimental values
dashed horizontal line : theoretical values
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F-91.3 MHz (S TX) cut F=95.6 MHz (close to B.K Sinho's STC-cu-,
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d : (4) = 0, 0 = -13*, T~ = 290) plate thickness: 2 mm
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Fig. 14
Experimental results of the force-frequency effect in the vicinity of P45 cut

solid lines: single diametral compression
broken lines: double diametral compression

a:(D= 0, 0 = 39, T = 46) plate thickness:lm1n
b:(D= 0,06 = 45, pr = 47)

c: ((D = 0, 8,= 39, p = 46) plate thickness: 2 num
d(D= 0,06= 33, p=44.4)
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c) Improvements of the model : ahisotropic stress calculation, effects of

plate thickness

Introduction of anisotropy in the determination of the mechanical bias

The force-frequency effect in a circular disk according to the isotropic stress

calculation is given by

AF = 2P Cia+$a)+ 2 ('a + a 3) cos2-2Q sin 2 ) (24)F ndt , It "s33)+2(S.3 11

0

where P is the applied force along a diameter

d is the diameter and t the thickness of the disk
sail, sQ. , sa3 are the in-plane coefficients expressed in the axes (a,a 3)

parallel to the SAW

13 is the azimuthal angle between the SAW and the force (Fig. 7).

The simple geometry of the circular disk allows an exact evaluation of the quasi-

static mechanical bias at the center, taking into account quartz anisotro'y.

According to Janiaud's anisotropic calculation (16], the stress distribut-on is still a

simple radial distribution and its expression at the center of the plate is:

T_ p 4A A +B (25)
+I rdt 8+e+ '8-+ y

p8 (A+B (26)

T0 =0 (27)
13

where 13 is the azimuthal angle between the SAW and the force (Fig. 7)

T is the propagation angle of the SAW

(e, , y, 8 are the following combinations of compliance constants expressed

in.the axes (alo, a,o)

=4 (Su I-S 33) (28)

=S 1 1 +S 3 3 - 2S 13 -S 65 (29)

y = 4 (S 15 +S 35) (30)

8 =2S 13 +S,1 +3S33 +3S 1 (31)
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Coefficients A and B are determined numerically by the static equilibrium

conditions for the plate. These coefficients depend on crystal anisuLropy and are

computed for each set-of cut angles ((,6) and propagation direction T.

Final expression of;:t.he relative frequency, shifts for a single diametral compression

of magnitude P is

F 2 T, IaI +Sa3 3 )

2 )0' T 33 + os2V)
'" + (Sall + $a 33) 2

1 2 )sin2p (32)

In that case, the' "mean value" corresponding to a 4-point symmetrical compression
of magnitude P/2 is no longer independent of the angles P and TI and is given by

F 2 ( 33
0

Comparison between isotropic and anisotropic stress calculation is shown on Fig. 13
where solid lines represent theoretical values of the anisotropic stress calculation

(broken lines = isotropic calculation).

The difference between the two models depends on the crystal cut. In the case of the

ST-cut (Fig. 13a) the anisotropic model predicts a well-marked oscillation in the
case of a 4-point compression. The average value of the oscillation corresponds to a
constant value given by the isotropic stress calculation.

The difference between the two models is also significative in thecase. of Fig. 13b
((D = 0, 0 = 41.8, T = 48.2). In the case of the cuts (4, = 0, 8 = -10°, T = 30 °) the

two models predict almost the same result, and do not explain the discrepancy in
amplitude and phase between theory and experiment on Fig. 13c. Fig. 13d shows the

investigation on a thicker plate (2 mm thick) with a better agreement between

theory and experiment ; this could be explained by a significant reduction of
parasitic bending forces with respect to the previous experiments (1 mm thick).



27

Table 2 summarizes the experimental results obtained.

8=-10 8=41.8' ST, 8=42.75'
P=30" ' =48.2" X T =0"

coupling factor AV/V 4.9x 10-4  4.5x 10- 4  5.8xl 0- "

beam steering angle -5.7°  6 0

2-nd order _9K 2  _9 K 2 -34x K-2
temperature coefficient -30X 10 -30X 10
sensitivity to planar -12 2 -1 -12 2 -1 -12 2 -
isotropic stresses <3x10 m A <5x10 m .N z12x10 m .N-1 f

Table 2

Through this model, the last step, at the present time, of analytical calculation has
been reached for diametral in-plane compression.

As announced in the second interim progress report [26] numerical analysis by
finite element method were implemented.

d) Comparison with results obtained by finite element analysis

Up to confirm previous predictions, particularly when anisotropy is held into
accoung, finite element model have been coupled with the SAW calculation
programm in two manners:

- with stress sensitivity coefficients

- with complete integral expression of the perturbation method.

Since the compression is supposed to be homogeneous along the thickness, the
present model is in two dimensions (Fig. 15). As in experiments (Fig. 7), the bottom
of the plate is fixed and forces are applied at its top. The elastic constants used for
calculation are CH, C 13, C1 , C,33 C35, C55 and the direction of propagation T is
incremented with a 50 step- up to simulate the azimuthal angle f3 between T and
force direction as-in experiments.
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Fig. 15: Two dimension finite element model
One Newton force is applied at the top of the plate,

the bottom remains fixed as in experiments

Stresses, strains and displacement gradients are obtained near the center of the
plate, for 8 triangular elements, forming a regular octagon around it. The value of
stress, strain and displacement gradients are known in the barycentre of each
element. The degree of interpolation polynomials is 1 (easier for calculating
displacement gradients). After calculation, the datas have to be rotated to bring
them back in the propagation axis.

In the first case of coupling finite element datas and the SAW programm, eq. (18) is
used without more complications if the elements have the same surface. For a
complete calculation (2nd case), perturbation method integral is replaced by
summation over the elements, taking their surface into account. The exponential
term in a2 (thickness coordinate) is analytically integrated from 0 to infinite. In the
case of the regular octagon, the,8 elements present the same surface, so it simplifies
the expression used, but the principle remains the same, as follows
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where e represents the number of the current element, S(e) its surface and Hikjm (e)

the mechanical prestrained tensor for the element. In the case of isosurface for

elements, the term S(e) is equal to unity.

Computations were made for (ST,X) cut (Fig. 16).

F-F .(Hz) F-F (Hz')0 0 1

250 - 250

20 - (D 0 200 T Q
0- .I"" "I SO

1001 I*
" '"", 50+ . ....

_- -cT
o- '100<

-zoo - -200,+

-80-60-40-20 0 20 40 60 80 100 120 140 160 '80 -a0-60-40-20 0 20 40 60 =0 00 120 140 160 180

Fig. 16
Finite elements analysis results for (ST,X) cut

a: comparison with experimental measurements
b: comparison with analytical isotropic model

(D complete coupling between finite element and perturbation
methods
( calculation using stress sensitivity coefficients
@ classical isotropic model

As in anisotropic analytic model, a strong oscillation appears for (ST,X) cut with the

complete reckoning, that seems to valid previous computations. This effect is also

present when using stress sensitivity coefficient.s, but very smoother than the

previous one. It can be also noted that the magnitude in the first case is much

important than experimental results. ThLs might be explained by strict restrictions

on displacement used to resolve the-static mechanical problem, and also the fact

that interpolation polynomials are of degree 1, that yields to significative errors for

the model. Presently, calculation with polynomials of 2nd degree is implemented.
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As a conclusion of this chapter, one can establish that analytical and' numerical
results are in good agreement, and also with most of experimental ones.

Classical isotropic model can be used to choose a cut for its mechanical properties.
More complete reckoning permits to improve simple models for a given structure.

The isotropic model has been numerically implemented to test the compatibility

between finite elements datas and the SAW program. It results that such a manner

to calculate relative frequency shifts seems better than the stress coefficients

calculation method. This phenomena is perhaps due to cumulative errors along the

systematic tensorial calculation.
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4 - EXPERIMENTAL STUDY OF DYNAMICAL TEMPERATURE EFFECTS

In this part, the frequency instability due to dynamical temperature perturbations

is studied in reference to previous works about this subject [23-24].

It has been shown that mounting design has an important influence on the thermal

sensitivity. A strong analytical effort has been made for demonstrate the existence

of cuts insensitive to dynamic thermal effects, and yields to the conclusion that
radial thermal conductivity may induce more frequency shifts than thickness

conductivity in identical heating conditions [24]. Particularly, a two-dimension
isotropic model was established, giving the time dependent distribution in a

circular plate. Nevertheless, the solution obtained was really cumbersome and not

of practical interest in SAW device modellings.

So, an experimental investigation has been presently choosen for the previous cuts
mechanically tested (§ 3), with the idea that dynamic thermal perturbation within

the plate has a similar behaviour as for stress sensitivity previously studied, but
with a better accuracy.

The SAW frequency-temperature variation law, given by [23]

f v (35)- = a (T- TO) + b, (T - T )2 + a (35

fo 0 dt

where ao, bo are respectively the first and second order static temperature

coefficients and a the dynamic temperature coefficient, reduces to

dyn dT (36)
\fdn cit

when the device is just around temperature To.

This model shows that the relative frequency shift due to dynamic temperature

effect is proportional to the thermal excitation speed.

a) Experimental method

In fact, when a SAW resonator is submitted to dynamic temperature biases, the

whole enclosure is excited and the thermal wave is assumed to propagate mainly

via the mounting of the quartz plate. To obtain such experimental effects, a supply
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has been built composed of a copper plate (choosen for its good thermal

conductivity) with a ceramic case NPN transistor fixed on its bottom (Fig. 17).

Two mountings, supporting the quartz plate, are attached on the top of the copper

plate permitting thermal excitation of the SAW propagating substrate. The whole

system is placed in a brass case electrically refered to zero potential (Fig. 18) with
no thermal conductivity between the enclosure and the SAW device.

Two resistive sensors, one fixed under the quartz plate and the other one on one of

the mountings, give the temperature variations. This device and the loop amplifier

are at the initial temperature of-30'C up to permit thermal cycles approximatively
around ambiant temperature (18 to 25°C). The experiment is controlled by a
program that commands the electric excitation of the transistor and stores

temperature and frequency datas during cycles. Each experiment is made with a

significative number of temperature cycles, that yields to obtain repetitive
measurements around a steady state.

b) Results

Classical (ST, X) cut and a single-rotated, close to TG, cut (4) = 00, 6 = -7', T = 310)
have been tested, and comparison is made between results. First, we verify that

experimental conditions of dynamic temperature tests were present by cycling both

cuts at different magnitude of thermal excitation, for a fixed cycling time. Results

are shown in Table M.

Comparison between the two cuts behaviour is possible, and we showed (Fig. 19)
that (() = 0, 6 = -70, T = 310) cut is about ten times less sensitive than (ST,X) cut,

that seems to confirm previous assumptions on stress sensitivity.

It has been demonstrated that temperature behaviour is an accurate method to

determine the best insensitive cut for SAW device applications. Nevertheless, this
method needs a heavy setup to obtain the sensitivity and it could be interesting to

develop numerical modelings to predict the sensitivity, taking into .ccount the

right design.
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Fig. 17 : Heating device for dynamic thermal sensitivity measurements

Fig. 18: The SAW delay line is mounted in a brass enclosure
with a good thermal insulation
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F-F (Hz) F-F0 (Hz)

to 4

10 2

-to 0

-20 -2

-30 -4

T (0C) T C
-40 ' ; , -6 1

17 ,9 18 18,1 16,2 18,3 18,4 18,5 1 ,s 23,4 23,6 23,8 24 24,2 24,4 24,6
(a) (b)

Fig. 19: Comparison between (ST,X) cut (a) and (4 = 00, 6 = -7°, P = 310) cut (b)
cycle duration: 180 s

number of measurements: 171
Fixation points are the in-plane stress insensitive ones

(ST, X) cut (4) = 0° ; 0 = -7° ; T = 31 °) cut

cycling speed (F-FO)max"- cycling speed (FFo)max -
in K/mn (F-Fo)min in K/mn (FFo)min

in Hz in Hz

0.203 19.5 0.388 4.3

0.399 39.3 0.433. 4.6

0.612 58.5 0.788 9.3

Table 3

After the results of this table, dynamic thermal coefficient a of the two cuts can be

evaluated.

For ST-cut ais equal to 1.10.6 s/K and the (4) = 00, 6 = -70, T = 310) cut has a

dynamic thermal coefficient a equal to .11.10 "6, then ten times lower than for the

usual quartz cut.

This confirms the stress sensitivity calculated in the third chapter.



35

5- CALCULATIONS ON FLEXURAL SENSITIVITY OF SAW QUARTZ
CUTS COMPENSATED FOR PLANAR ISOTROPIC STRESSES

In this section, the behaviour of a SAW device built on a quartz plate submitted to
bending forces will be examined. The simple case of a rectangular plate, either
clamped at one end and loaded at the other (cantilever beam) or clamped on two
edges and submitted to a normal acceleration, and the case of the same plate
subjected to equal and opposite bending moments at its ends are presented. In the
two first approaches, stress distributions will be calculated in the classical model of

the isotropic thin plate [21], and their influence on SAW propagation will be
calculated according to the model of stress sensitivity coefficients.

The last one consists in a complete anisotropic modelising for stresses, strains and

displacement gradients, and the numerical processing established to couple finite
element method and SAW program will be used to calculate the frequency shift.

In all these cases, the fixation points are supposed to be "not too close" to the SAW
propagating beam, so boundary effects can be neglected (St Venant principle).

a) classical isotropic stress calculations

Let us consider the case of the isotropic cantilever beam. The width of the plate is
supposed infinite and the loading force homogeneous. So, in agreement with
classical thin plate theory [211, the problem reduces to the resolution of a two-
dimension differential equation which expression is

d4 + 24 = (37)
-+2 -- -=

4 22 4aal aal 2
1 1 2 ~2

with 4 the stress function related to stresses by the relations

r %. T T (38)
i a 2 22 2' 2 12- aa k9

2  2

where the absence of body forces is assumed (Fig. 20).
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Fig. 20: Stresses in a cantilever beam clamped at one end

In such a case, solution of eq. (37) in the form of polynomials is of interest. Having
regard to boundary conditions which are:

- no stresses on longitudinal sides ± h

- the sum of the shearing forces distributed over the loaded end must be equal to F

- T1 must be equal to zero at the loaded end (no compressive stress in the al
direction at the loaded end) and taking the stress function in the form of a

polynomial of fourth degree yield to the following solution

- 3F 3F (a2 -h 2) (39)=u - a a2 Tu (-2

ll 2h 3 a1 2  12 2h 3

By integrating these expressions over the SAW propagating volume, and then

dividing the results by the value of this volume, the mean values of stresses that
perturbate SAW propagation are obtained. Using a perturbation method with the
hypothesis of no rigid rotation of the plate (after application of static bias), the

frequency shift is given by
AW ." o, (40)

< > al <I > + Sa2 <  >1

W11 11 12 12
0

where < > stands for the mean value over the volume where the SAW propagates.

In eq. (40) the loading force is applied along the propagation direction.
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The model. of cantilever beam has been used for SAW accelerometer applications,
but the case of a rectangular plate clamped on two edges and bent by its own weight
(which corresponds to the case of quasi-static nofrmal accelerations) is probably
more realistic for the modelization of SAW oscillators.

The calculation process is the same as the previous one, except that a polynomial of
the fifth degree is chosen for the stress function and the boundary conditions are:

- the plate is sunk at its two ends

- there is no normal stresses acting on the longitudinal sides
- there is no flexural moments applied at ±e (Fig. 21).

2L
" 4 4 2X'+h• r\ Z/LL4X

SAW pro agating
SvoL me

-h,

acceleration

a2

Fig. 21

Solutions respecting boundary conditions given by the classical theory of elasticity
[171 yield the following expressions of stresses

3P9 2 2 3 3 2 (41T a a - ap)+ - P9 g- -)(
2h2 2 3 2 h2 5 2

22 2-2 a2 (42)

T2 3pg 2 3pg
T 2h2 1 2 - (43)
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The relative velocity shifts of the SAW will be expressed (using a similar notation

as in eq. (40) by

<- > a <T 0 > + 'ai <T'> (44)
0

In eq. (44) the contribution of the shear component < T 120 > vanishes by symmetry.

Eqs. (40) and (44) therefore exhibit a similar form combining an in-plane

compressive stress < Tll°0> and a second term either due to a shear component
(plate clampled at one end) or to a normal compressive stress (plate submitted to a

normal acceleration).

An important fact to point out is that if the main contribution is due to the

terme sail <Tll>, flexural sensitivity will be equivalent to in-plane stress

sensitivity. Under this assumption, a device built with a cut compensated for
planar isotropic stresses will also exhibit a low sensitivity to a symmetrical

distribution of flexural stresses.

b) Anisotropic stress model

Timoshenko and Goodier (21] established that a 3-dimensional elasticity problem

can be modelised with equilibrium equations and boundary conditions for stress

components either constant or linearly dependent of coordinates, so the compati-

bility equations are identically respected, and the stresses are correct solutions of

the problem. If the stress distribution is assumed to be as follows

- M -5 -- -)
11 = 7 ' 2  22 33 13 12 23

with I the moment of inertia, M the bending moment and a2 the thickness

coordinate (Fig. 22), we showed that anisotropy could be introduced for calculating

strains and displacements without complication for the model.
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The reckoning procedure is quite the same as exposed in [21) and yields to the

following results:

.S. -- Si- To,

il till 11

- M
u1 = -a (s a +s a1 2 11 1 51

(46)

U ( s + " " ) a -+ )aS 2 1 2 3 1 2 1
2 1[6 2 1 5 2 2 2 3

M Is. a a, a a, + I a 3

3  = " j a2  
+  s31 2 3 41 2]

where conditions of fixed point in the center of the plate and no rigid rotations
around it have been imposed up to assure the unicity of the solution.

Values for stresses, strains and displacement gradients have been calculated in the

propagation area for a certain number of small parallelepipedic elements (Fig. 23),
and then introduced in the perturbation method. Fig. 26 shows the results for

(ST,X), experimental STC and TG (-10, .30) cuts, which seems to confirm the
possibility of very low sensitivity to flexural effects and especially forTG cut.
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a2

+h

"h

Fig. 22
Thin quartz plate submitted to equal and opposite bending moment M

dimensions: h = 1 mm ; e = L = 22 mm.

Fig. 23
SAW propagating volume subdivided in small parallelepipedic elements

(with X the wavelength)
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c) Numerical results of the cuts (P30), (P45) and (STX)

The flexural effect was calculated for a device built on a rectangular plate with

some realistic values
plate lenght: 17 mm --+ 22 mm

thickness: 2 mm
wavelength : 34.4 jim
wavelength/thickness ratio: 1.7 X 10.2

Results are presented on Fig. 24 for the plate clamped at one edge and on Fig. 25 for
the plate clamped on two edges and submitted to a normal acceleration. Results are
expressed in terms of relative velocity shifts (normalized to the mean value of
compressive strains < S11 > = sl 111 < T 1 >) as a function of the azimuthal angle
between the SAW propagation direction and the edges bf the rectangular plate
(Figs. 24a and 25a).

For the P30 and P45 cuts, the main contribution to the flexural effect is due to the

compressive stress < T11 >. The sinusoidal shape of the curves on Figs. 24 and 25
may be interpreted simaply as the tensorial transformation of stresses when turning

the azimuthal angle P ; this behavior is very similar to the case of simple diametral
compression calculated in sec. 3, Eq. (22).

Results obtained with the anisotropic model appear on Fig. 26. They show a strong

similarity about the shape with the anisotropic radial in-planes sensitivity curves
(section 3) and a general identical behaviour with previous isotropic models
(because of the particular stress distribution, that is T11 the only non-zero stress

term).
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Fig. 24
Flexural effects (isotropic stress model) for a SAW propagating

on a bent cantilever beam
dimensions: L = 17 mm thickness = 2 mm X = 34.4 pm

a: definition of the azimuthal angle Ai
b, c, d comparison of planar isotropic stress compensated cuts

with the classical (ST,X) cut
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,propagation
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-0,
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-31--- -
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Fig. 25

Flexural effects for a SAW propagating on a plate clamped on both edges
and submitted to a normal acceleration. Convention as in Fig: 16.

2L = 22 mm thickness = 2mm .\ = 34,4 pm
Similarity between Figs. 24 and 25 is due to thefact that the main contribution

to the effect is due in:both cases to compressive in plane stresses
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Fig. 26
Flexural effects for a SAW propagating on a quartz plate

submitted to equal and opposite bending mbments M.
These results are very closed to previous bending effect models and to compressive

in-plane anisotropic modelbecause of the particular stress distribution
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For a suitable choice of the angle P, the device will be insensitive to flexural effects.

In the case of the P30 and .45 cuts, there is no offset'value of the sinusoidal curve,
and therefore the device will be insensitive to a symmetrical distribution of bending

stresses: this will happen if the two principal compressive stresses Ti and T33 are

equal and with same sign ; the contribution of other stresses such as T12, T32 , T 22

being of much lower magnitude.

CONCLUSION

'Experimental measurements have been extended in the vicinity of the P45 cut,

close to B.K. Sinha's STC-cut [14]. The following cuts (4 = 00, 0 = 390, T = 46),

(4 = 00, 0 = 330, T = 44.4°), (4 = 0', 0 = 45 ° , P = 47 ° ) have been experimentally

found to be temperature-compensated (by small correction on the propagation

direction T relatively to the theoretical values given by computation) and then
mechanically tested in radial in-plane compression experiment. During these

manipulations, it has been shown as previously than reducing stress sensitivity by
increasing thickness of the plate induces higher experimental dispersion of the

results.

Finite element method has been employed in the calculation process of frequency

shift. It was of major importance to valid the previous analytical anisotropic model.

Results that have been obtained are rather in a good agreement with experiments

for a two dimensions model. More, the tests implemented in order to establish the

validity of the coupling between finite elements and SAW program showed that

systematic calculations may introduce significative errors in the stress sensitivity

coefficients calculation.

A dynamic thermal experiment was implemented. It has been shown that,

depending on SAW orientations, it exists particular cuts which are less sensitive

tilan others, or particularly than standard (ST,X) cut. That may yield to the

realisation of SAW devices, insensitive to- in-plane compression, flexion effects,

statically and dynamically temperature-compensated, with a satisfying safety

margin on cut angles especially in the vicinity of the P30-cut.

A new flexural anisotropic model was established with a good agreement between

its results and the isotropic previous one, given in the 2nd interim progress. More,

since St Venant's principle is assumed so that only compressive effects are of
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importance in the plate center, the accordance between all the mechanical models is

clearly demonstrated.

Of course, we must purchase our investigations, particularly for dynamic thermal

effect experiments and computations, that are now possible by the use of finite
element program MODULEF (by courtesy of Mr. Crolet, Director of the L.C.S.;
iBesangon, France). We will investigate the time dependent thermal distribution in
a 3 dimensions anisotropic plate and the stresses due to a dynamic temperature

excitation.

We will also attempt to work on higher precision quartz devices, up to confirm the
analytical predictions, and cuts in the vicinity of P45 cut will be thermally

experimented.

Also classical quartz lines used for the previous experiments should be replaced by
real resonators, that would introduce some modifications in the theoretical

approach of phenomena.

The different points can merge into a general method to define the whole structure

of a low sensitive SAW device for military or space applications.
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APPENDIX I

CUT ANGLES AND PROPAGATION DIRECTION FOR SAWs ON QUARTZ
)EFINITION AND SYMMETRY PROPERTIES

I - Correspondance between IEEE and Euler notation

Fig. 27 defines angles [16] and Euler angles according to Rosenberg (25].

Z,Z'
Z" z V

YA

8"l

-y

\, x"\ X,X" I

X Y", a]2 X

oi F

N

Fig. 27: Correspondance between IEEE and Euler angles

Correspondance between the two angles is obtained by identifying the unit vectors

(al, a2, a3) defined by IEEE angles and.(B, N, F) vectors using Rosenberg's notation
for Euler angles.



48

The only difference appears in the definition of the second angle eIEEE or PEuler, the

first refering to the plate surface and the second to the plate normal. Thus, the

correspondance is simply:

XEuler = (IEEE (A.1)

PEuler :IEEE - 900 (A.2)

OEuler = TIEEE (A.3)

2 - Symmetry properties (IEEE notation)

Surface waves on quartz obey the three following symmetries.

a) Redundancy in the definition of the cut angles

From the definition of the cut angles, the following symmetry property appears:

(4, 0, ) = (4 + 1800, 1800 - 0, T + 1800) (A.4)

b) Symmetries of quartz

* 3-fold symmetry around the Z-axis

(4, O, ) = (4) + 120', 0, ') (A.5)

e 2-fold symmetry around X-axis

(, , T ) = (-4, 0 + 180, TI') (A.6)

Combination of(29) and (27) yields an equivalent form

(W), , T) : (180°-al, -0, 1800 + T') (A.7)

c) Symmetries of surface waves

Two surface waves on the same plate have the same properties in case of:

* propagation on the same surface, with opposite directions

(, 0, T) = (, 0, T + 1 8 0 °) (A.8)

* propagation in the same direction, but on the other side of the plate

(i),0, T) -( , + 1 8 0 , - ) (A.9)
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Eqs. (A.8) and (A.9) come from the symmetry of the determinants that define the

surface wave parameters.

Combination of(A.6) and (A.9) yields the equivalent form
(, , q ) = (-, 8, -T1) (A.10)

d) Consequences on the angular range required for a complete stress and

temperature coefficients mapping

Starting from the most general angular range : 0 - 360' for the three angles, the
three symmetries a) b) and c) yield

eq. (A.4) reduces the angular range on 8 to -90* . + 90'

- eq. (A.5) reduces the angular range on 4 to -600- - + 60'
- eq. (A.7) reduces the angular range on 8 from -90 -* + 90" to 0 -* + 90'
- eqs. (A.8) and (A.9) reduce the angular range on T to 0 -+ 900.

The combination of (A.5), (A.7), (A.8) yields:

(4), 8, qi) = (60°.), -8, ') (A.l)

(4), 6, Ti) = (-600-4, -8, T) (A. 12)

Eqs. (A.11) and (A.12) show that the points (4 = +30 ° , 0 = 0) and (4) = -30', 8 = 0)

are centers of symmetry for the contour-lines on Figs. 4 and 5.

3- Correspondance between IRE-1949 and IEEE-1978 standards on

piezoelectricity

In 1978, the IEEE standard on piezoelectricity [27] changed the orientation of the

canonical axes of quart;., so that the definition for quartz should be coherent with
other crystals. The consequence of this change is a rotation of the canonical axes by

180 ° around the Z-axis i.e. : X -+ -X, Y -+ -Y.

Most of authors still refer to the "old" 1949-standard which is taken as the reference
in this work. Correspondance between the two standards is as follows : a cut defined

by the angles (4, 0, 4r) in the 1949-standard will be the same if defined by the angles
(4+180", 0, p) in the 1978-standard. Using symmetry equation (A.7) the

correspondance between the two standards is finally:



1949-cut (4;- 0, q,) = 1978-cut (-,-,qr) (A. 13)

For example :the ST-cut will be defined- by (i=0, 0 = 42.75', T~ 0) in 1949-

standard and by (4=0, 8 -42.75', W~ 0) in the "nw 1978-standard.
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